259 research outputs found

    Explainable artificial intelligence through graph theory by generalized social network analysis-based classifier

    Get PDF
    We propose a new type of supervised visual machine learning classifier, GSNAc, based on graph theory and social network analysis techniques. In a previous study, we employed social network analysis techniques and introduced a novel classification model (called Social Network Analysis-based Classifier-SNAc) which efficiently works with time-series numerical datasets. In this study, we have extended SNAc to work with any type of tabular data by showing its classification efficiency on a broader collection of datasets that may contain numerical and categorical features. This version of GSNAc simply works by transforming traditional tabular data into a network where samples of the tabular dataset are represented as nodes and similarities between the samples are reflected as edges connecting the corresponding nodes. The raw network graph is further simplified and enriched by its edge space to extract a visualizable 'graph classifier model-GCM'. The concept of the GSNAc classification model relies on the study of node similarities over network graphs. In the prediction step, the GSNAc model maps test nodes into GCM, and evaluates their average similarity to classes by employing vectorial and topological metrics. The novel side of this research lies in transforming multidimensional data into a 2D visualizable domain. This is realized by converting a conventional dataset into a network of 'samples' and predicting classes after a careful and detailed network analysis. We exhibit the classification performance of GSNAc as an effective classifier by comparing it with several well-established machine learning classifiers using some popular benchmark datasets. GSNAc has demonstrated superior or comparable performance compared to other classifiers. Additionally, it introduces a visually comprehensible process for the benefit of end-users. As a result, the spin-off contribution of GSNAc lies in the interpretability of the prediction task since the process is human-comprehensible; and it is highly visual

    A comparative study of different pre-trained deeplearning models and custom CNN for pancreatic tumor detection

    Get PDF
    Artificial Intelligence and its sub-branches like MachineLearning (ML) and Deep Learning (DL) applications have the potential to have positive effects that can directly affect human life. Medical imaging is briefly making the internal structure of the human body visible with various methods. With deep learning models, cancer detection, which is one of the most lethal diseases in the world, can be made possible with high accuracy. Pancreatic Tumor detection, which is one of the cancer types with the highest fatality rate, is one of the main targets of this project, together with the data set of computed tomography images,which is one of the medical imaging techniques and has an effective structure in Pancreatic Cancer imaging. In the field of image classification, which is a computer vision task, the transfer learning technique, which has gained popularity in recent years, has been applied quite frequently. Using pre-trained models werepreviously trained on a fairly large dataset and using them on medical images is common nowadays. The main objective of this article is to use this method, which is very popular inthe medical imaging field, in the detection of PDAC, one of the deadliest types of pancreatic cancer, and to investigate how it per-forms compared to the custom model created and trained from scratch. The pre-trained models which are used in this project areVGG-16 and ResNet, which are popular Convolutional Neutral Network models, for Pancreatic Tumor Detection task. With the use of these models, early diagnosis of pancreatic cancer, which progresses insidiously and therefore does not spread to neighboring tissues and organs when the treatment process is started, may be possible. Due to the abundance of medical images reviewed by medical professionals, which is one of the main causes for heavy workload of healthcare systems, this applicationcan assist radiologists and other specialists in Pancreatic Tumor detection by providing faster and more accurate method

    Studying the connection between SF3B1 and four types of cancer by analyzing networks constructed based on published research

    Get PDF
    Splicing factor 3B subunit 1 (SF3B1) is the largest component of SF3b protein complex which is involved in the pre-mRNA splicing mechanism. Somatic mutations of SF3B1 were shown to be associated with aberrant splicing, producing abnormal transcripts that drive cancer development and/or prognosis. In this study, we focus on the relationship between SF3B1 and four types of cancer, namely myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and chronic lymphocytic leukemia (CLL) and breast cancer (BC). For this purpose, we identified from the Pubmed library only articles which mentioned SF3B1 in connection with the investigated types of cancer for the period 2007 to 2018 to reveal how the connection has developed over time. We left out all published articles which mentioned SF3B1 in other contexts. We retrieved the target articles and investigated the association between SF3B1 and the mentioned four types of cancer. For this we utilized some of the publicly available databases to retrieve gene/variant/disease information related to SF3B1. We used the outcome to derive and analyze a variety of complex networks that reflect the correlation between the considered diseases and variants associated with SF3B1. The results achieved based on the analyzed articles and reported in this article illustrated that SF3B1 is associated with hematologic malignancies, such as MDS, AML, and CLL more than BC. We found that different gene networks may be required for investigating the impact of mutant splicing factors on cancer development based on the target cancer type. Additionally, based on the literature analyzed in this study, we highlighted and summarized what other researchers have reported as the set of genes and cellular pathways that are affected by aberrant splicing in cancerous cells

    Parallel wavelet transform for spatio-temporal outlier detection in large meteorological data

    Get PDF
    Abstract. This paper describes a state-of-the-art parallel data mining solution that employs wavelet analysis for scalable outlier detection in large complex spatio-temporal data. The algorithm has been implemented on multiprocessor architecture and evaluated on real-world meteorological data. Our solution on high-performance architecture can process massive and complex spatial data at reasonable time and yields improved prediction

    Query model for object-oriented databases

    Get PDF
    A query language should be a part of any database system. While the relational model has a well defined underlying query model, the object-oriented database systems have been criticized for not having such a query model. One of the most challenging steps in the development of a theory for object-oriented databases is the definition of an object algebra. A formal object-oriented query model is described here in terms of an object algebra, at least as powerful as the relational algebra, by extending the latter in a consistent manner. Both the structure and the behavior of objects are handled. An operand and the output from a query in the object algebra are defined to have a pair of sets, a set of objects and a set of message expressions where a message expression is a valid sequence of messages. Hence the closure property is maintained in a natural way. In addition, it is proved that the output from a query has the characteristics of a class; hence the inheritance (sub/superclass) relationship between the operand(s) and the output from a query is derived. This way, the result of a query can be persistently placed in its proper place in the lattice

    A survey of machine learning-based methods for COVID-19 medical image analysis

    Get PDF
    The ongoing COVID-19 pandemic caused by the SARS-CoV-2 virus has already resulted in 6.6 million deaths with more than 637 million people infected after only 30 months since the first occurrences of the disease in December 2019. Hence, rapid and accurate detection and diagnosis of the disease is the first priority all over the world. Researchers have been working on various methods for COVID-19 detection and as the disease infects lungs, lung image analysis has become a popular research area for detecting the presence of the disease. Medical images from chest X-rays (CXR), computed tomography (CT) images, and lung ultrasound images have been used by automated image analysis systems in artificial intelligence (AI)- and machine learning (ML)-based approaches. Various existing and novel ML, deep learning (DL), transfer learning (TL), and hybrid models have been applied for detecting and classifying COVID-19, segmentation of infected regions, assessing the severity, and tracking patient progress from medical images of COVID-19 patients. In this paper, a comprehensive review of some recent approaches on COVID-19-based image analyses is provided surveying the contributions of existing research efforts, the available image datasets, and the performance metrics used in recent works. The challenges and future research scopes to address the progress of the fight against COVID-19 from the AI perspective are also discussed. The main objective of this paper is therefore to provide a summary of the research works done in COVID detection and analysis from medical image datasets using ML, DL, and TL models by analyzing their novelty and efficiency while mentioning other COVID-19-based review/survey researches to deliver a brief overview on the maximum amount of information on COVID-19-based existing researches. [Figure not available: see fulltext.

    A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus (COVID-19)

    Full text link
    Novel coronavirus (COVID-19) outbreak, has raised a calamitous situation all over the world and has become one of the most acute and severe ailments in the past hundred years. The prevalence rate of COVID-19 is rapidly rising every day throughout the globe. Although no vaccines for this pandemic have been discovered yet, deep learning techniques proved themselves to be a powerful tool in the arsenal used by clinicians for the automatic diagnosis of COVID-19. This paper aims to overview the recently developed systems based on deep learning techniques using different medical imaging modalities like Computer Tomography (CT) and X-ray. This review specifically discusses the systems developed for COVID-19 diagnosis using deep learning techniques and provides insights on well-known data sets used to train these networks. It also highlights the data partitioning techniques and various performance measures developed by researchers in this field. A taxonomy is drawn to categorize the recent works for proper insight. Finally, we conclude by addressing the challenges associated with the use of deep learning methods for COVID-19 detection and probable future trends in this research area. This paper is intended to provide experts (medical or otherwise) and technicians with new insights into the ways deep learning techniques are used in this regard and how they potentially further works in combatting the outbreak of COVID-19.Comment: 18 pages, 2 figures, 4 Table

    Moderation of services’ EKC through transportation competitiveness: PQR model in global prospective

    Get PDF
    The continuously increasing GHG emissions have created environmental pollution and several challenges to ecosystems and biodiversity. The challenges of climate change are multipronged, resulting in melting glaciers, flash floods, and severe heat waves. In this regard, the adaptive and mitigation strategies to manage the consequences of climate change are highly important. The transport sector creates a quarter of carbon emissions, and this share is continuously increasing. Accordingly, this research study uses transport competitiveness to determine carbon emissions of the transport sector for 121 countries covering the time period from 2008 to 2018. The Panel Quantile Regression (PQR) technique is engaged to analyze the study results. The findings highlight that transport competitiveness tends to increase carbon emissions of the transport sector across quantile groups 1 and 3, while it reduces carbon emissions in quantile group 2. The U-shaped services’ EKC is validated in quantile groups 2 and 4. The moderation engaged, i.e., transportation competitiveness, changes the turning point of the services’ EKC across quantile groups 2 and 4. However, in the high-CO2 quantile group, the moderation impact of transport competitiveness is strongest as it reduces the sensitivity by flattening the services’ EKC. Furthermore, the planned expansion of the population and improved institutional quality tend to mitigate carbon emissions across different quantile groups. The policy relevance/implications that are based on the study results/findings are made part of the research paper

    Interactive framework for Covid-19 detection and segmentation with feedback facility for dynamically improved accuracy and trust

    Get PDF
    Due to the severity and speed of spread of the ongoing Covid-19 pandemic, fast but accurate diagnosis of Covid-19 patients has become a crucial task. Achievements in this respect might enlighten future efforts for the containment of other possible pandemics. Researchers from various fields have been trying to provide novel ideas for models or systems to identify Covid-19 patients from different medical and non-medical data. AI-based researchers have also been trying to contribute to this area by mostly providing novel approaches of automated systems using convolutional neural network (CNN) and deep neural network (DNN) for Covid-19 detection and diagnosis. Due to the efficiency of deep learning (DL) and transfer learning (TL) models in classification and segmentation tasks, most of the recent AI-based researches proposed various DL and TL models for Covid-19 detection and infected region segmentation from chest medical images like X-rays or CT images. This paper describes a web-based application framework for Covid-19 lung infection detection and segmentation. The proposed framework is characterized by a feedback mechanism for self learning and tuning. It uses variations of three popular DL models, namely Mask R-CNN, UNet, and U-Net++. The models were trained, evaluated and tested using CT images of Covid patients which were collected from two different sources. The web application provide a simple user friendly interface to process the CT images from various resources using the chosen models, thresholds and other parameters to generate the decisions on detection and segmentation. The models achieve high performance scores for Dice similarity, Jaccard similarity, accuracy, loss, and precision values. The U-Net model outperformed the other models with more than 98% accuracy
    corecore